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Abstract

The central theme of this review is the dynamic interaction between infor-
mation selection and learning. We pose a fundamental question about this
interaction: How do we learn what features of our experiences are worth
learning about? In humans, this process depends on attention and memory,
two cognitive functions that together constrain representations of the world
to features that are relevant for goal attainment. Recent evidence suggests
that the representations shaped by attention and memory are themselves in-
ferred from experience with each task.We review this evidence and place it in
the context of work that has explicitly characterized representation learning
as statistical inference.We discuss how inference can be scaled to real-world
decisions by approximating beliefs based on a small number of experiences.
Finally, we highlight some implications of this inference process for human
decision-making in social environments.
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Representation
learning: the process
of learning a useful
and compact mapping
between observations
and states in a specific
task; usefulness can be
measured by how
efficiently one can
solve a task given the
current representation
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1. INTRODUCTION

Millennial decision-making can be complicated. We have a myriad of gamified apps that provide
us with ever more goals to strive toward. Our attention is in high demand by different facets of
social media. Our working memory is taxed by constant multitasking. To go about our daily lives,
we must somehow discount the distal sense of catastrophe surrounding climate change (and the
not-so-distal one brought on by a global pandemic). Yet, even in these conditions, we strive to
make sense of the world and make good decisions. At the core of this flexibility is the ability to
select relevant sources of information and use them for appropriate action selection.

Humans learn more from their experiences than just how to behave in different situations; they
also learn to organize experiences into internal representations that facilitate future behavior.This
organization depends on two core cognitive functions: selective attention and memory. In this re-
view, we discuss evidence that attention and memory can be thought of as interacting components
of representation learning. We show how humans rely on different forms of statistical inference
to organize past experiences and how this inference process gives rise to compact representations
of tasks that guide action in complex environments.We illustrate the generality of this framework
by showing that people spontaneously rely on such inference in social environments.

1.1. Partially Observable Markov Decision Processes

We first lay out a framework for defining information selection from the point of view of a goal-
directed agent that is trying to make optimal decisions in a multidimensional world.

A partially observableMarkov decision process (POMDP) formalizes an agent’s internal model
of the way the world unfolds throughout a task (Kaelbling et al. 1998, Russell & Norvig 2002,
Sutton& Barto 2018) (note that while POMDPs are often considered a formalization of the actual
generative structure of the environment, here we focus on POMDPs as formalizing the agent’s
internal representation of a task). POMDPs consist of tuples {S,A,T,R,O}.We can define the state
space S as a set of features (known as dimensions or attributes in the psychology literature) relevant
to the agent’s goal. For instance, when making tea, the state may include the location of the cup,
the existence or absence of different ingredients already in the cup, and the temperature of the
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water in the kettle. Given a set of possible actions A (e.g., pour water into the cup), the transition
function T = p(st+1|st , at ) describes how the agent believes the state will change after an action,
that is, the probability that each state will unfold given the current state and action. The reward
function R = p(rt |st , at ) takes in the current state and action and returns r, a scalar representing
the immediate utility of performing that action in that state (when making tea, reward is obtained
only when drinking the prepared tea). Transition and reward functions can be either deterministic
or probabilistic.

Importantly, in a POMDP, the state of the world is not directly observable. Instead, agents have
access to noisy observations emitted by the state as per the observation function O = p(st |o1:t , a1:t ),
which they can use to infer the underlying state. However, observations do not uniquely identify
states. For instance, the cup of tea will look identical before and after sugar was added to the hot
water. As a result of this aliasing, observations are not a sufficient statistic for determining the
probability that different events will unfold in the future (e.g., will the tea be sweet, and therefore
highly rewarding?). POMDPs, in this sense, are a formal representation of many real-world situ-
ations in which we must infer, using current and past observations and actions, the current state
of the world. Observation, transition, and reward functions together compose a world model—a
model of how the world would unfold henceforward, as per the current knowledge of the agent
(Hamrick 2019). Based on this model, the agent can simulate different decisions in order to plan
future action.

One might think of this process of inferring states from observations in two different ways.
In the machine-learning POMDP literature, the observation function encodes a probability dis-
tribution over true states of the environment. Alternatively, we do not have to assume that a true
Markov state that encompasses all that is necessary to determine T and R actually exists (R. Sutton,
personal communication) and can instead interpret st as a state representation internal to an
agent that balances accurately capturing the causal relationships between events in the world and
the computational and representational constraints of the agent. Under this view, representation
learning is the process of developing amapping from raw observations to state representations that
are appropriate for the current task. The usefulness of this mapping, and the inferred underlying
states, can be determined by experience (McCallum 1997).

1.2. The Curse of Dimensionality

To make correct actions, many reinforcement-learning algorithms postulate that agents estimate,
either through planning or through trial and error, the future value (i.e., the expected sum of future
rewards) contingent on taking different actions at each state of the world. For instance, the value
of adding sugar to an otherwise sugar-less cup of tea may be high, but the value of adding sugar
once sugar had already been added is very low. There is much evidence that humans and animals
learn such values from trial and error, and the neural substrates of this learning process are well
mapped (Barto 1995, Collins & Frank 2014, Daw et al. 2005, Joel et al. 2002, Montague et al.
1996, Niv 2009, Schultz et al. 1997, Sutton 1988). But the same algorithms that explain behavior
and neural activity on simple learning tasks learn much more slowly as the dimensionality of the
environment grows (Bellman 1957, Sutton 1988)—too slow to accurately account for real-world
learning (Lake et al. 2017). This is because representing all features of the environment quickly
leads to a combinatorial explosion, yielding too many different states for which values and policies
need to be learned (Figure 1).

Nevertheless, given multidimensional observations, an agent could compress the state space
by representing only some features and not others. This would improve learning through
generalization—what is learned in one situation (adding sugar to a red mug of tea) can be used to
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Water
(hot/cold)

Mug
(glass/metal)

Tea
(yes/no)

Sugar
(yes/no)

a b c d

State representation
without attention

State representation
with attention

Figure 1

Selective attention for state representation. Consider a representational space for the task of making tea,
defined along four dimensions: water temperature (hot/cold), mug material (glass/metal), sugar (yes/no), and
tea (yes/no), each involving, for simplicity, a binary feature. The top row depicts how the number of states
grows as we add dimensions. Considering only one dimension (water) results in two possible states (a). Two
dimensions would mean four states (b), three dimensions eight states (c), and four dimensions would mean 16
unique states (d). This exponential increase in the number of states as the number of dimensions grows is
known as the curse of dimensionality. The bottom row shows how selective attention can solve this problem:
Ignoring even one dimension (mug) reduces the size of the state space by a factor of two. Panels a–d adapted
from NerdBoy1392/Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Dimension_
levels.svg) (CC BY-SA 3.0).

estimate values and choose actions in other situations (making tea in a glass, or in a blue mug, or
at the office rather than at home), as long as those differences (cup material, color, and location)
are not represented as part of the state. In the rest of this review, we discuss work on human rep-
resentation learning: how humans learn a useful and compact mapping between observations and
states that affords efficient learning.

2. ATTENTION AND MEMORY CONSTRAINTS
IN REPRESENTATION LEARNING

At the core of representation learning is a need for efficient compression of experiences into a
small number of states that summarize the task-relevant information in a way that supports ef-
ficient learning of action policies. The optimal level of compression depends on the task and is
also influenced by the capacity of the agent’s attention and memory systems (Luck & Vogel 1997,
Ungerleider & Kastner 2000). Recent work suggests that both selective attention (Leong et al.
2017, Mack et al. 2016, Marković et al. 2015, Niv et al. 2015) and memory (Bornstein et al. 2017,
Collins & Frank 2012) independently influence learning and action selection. However, a funda-
mental feature of both systems is their limited capacity:We cannot attend equally to all the features
of an observation, and we cannot remember every observation we experience. This gives rise to
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Credit-assignment
problem: the problem
of correctly allocating
credit (or blame) for an
outcome to antecedent
actions or states

a credit-assignment problem for meta-decisions (Griffiths et al. 2015, Sutton 1988): Which fea-
tures of the observation space are important for inferring latent state and predicting future reward,
and should thus survive attentional selection? And which past events (observations and actions) are
necessary for correctly predicting state and reward dynamics and should therefore be remembered
for later recall?

2.1. Learning to Attend

Within psychology and neuroscience, attention has classically been defined as the selective pro-
cessing of a subset of features at any stage between sensation and action (Gottlieb 2012, Lindsay
2020).We suggest that a useful way to think about the need for selective attention is as a solution
to the curse of dimensionality (Section 1.2)—attending to irrelevant features of the environment
will cause a proliferation of states that will slow down learning (Niv 2019). We next review liter-
ature that has formalized attention learning as a policy solution for the curse of dimensionality,
allowing agents’ decisions about what is relevant to inferring latent states change with experience
(Figure 1). By selectively attending to only some aspects of the environment, an agent can eas-
ily generalize behavior across multiple different observations o, as long as they are similar along
attended dimensions.

Recent theories of dimensional attention learning are rooted in the study of human category
learning ( Jones & Cañas 2010, Kruschke 1992): the process of grouping experiences into mean-
ingful mental representations. In a classic categorization study, Shepard et al. (1961) showed that
the ease with which we learn categories depends on the structure of the categorization problem.
Human participants had to learn six types of category structures, each constructed from three
binary stimulus dimensions (similar to Figure 1). Type I was based on a unidimensional rule, so
attending to a single dimension was sufficient for perfect classification; type II instantiated an ex-
clusive or (XOR) logical rule in which membership depends upon whether one (not both) of two
specific dimension values is present. In this case, correct classification depended on attending to
two dimensions. Types III, IV, and V had some regularity, but an exception to the rule was always
present. To perform well, attention to all three dimensions was necessary. Finally, type VI could
only be learned by memorizing the mapping between individual items and category labels; that
is, no generalization across the eight stimuli was possible. Human categorization performance re-
flected the underlying structure: People were fastest at learning type I problems and slowest at
learning type VI problems.

To explain this pattern of results, the influential attention learning–covering map (ALCOVE)
model formalized two key cognitive principles (Kruschke 1992): (a) The basis of classification is
similarity to all exemplars in a category, and (b) classification requires dynamic selective attention
to different stimulus dimensions.To accomplish the second principle, ALCOVE uses error-driven
learning to learn attention weights that dictate how much each dimension should factor into the
similarity computation. Notably, for the benchmark data set (Shepard et al. 1961), dynamic se-
lective attention is critical for reproducing the patterns of human behavior, outperforming ap-
proaches based on rule learning (Nosofsky et al. 1994). The ALCOVE model is one example in a
class of models that formalize dimensional attention in a connectionist framework and show how
attention could be learned via an error-correcting mechanism (Cohen et al. 1990, Jones & Cañas
2010, Roelfsema & van Ooyen 2005). The model has also led to the insight that learners restrict
their attention to dimensions that are needed to succeed at the task at hand (McCallum 1997,
Rehder & Hoffman 2005).

In a striking example of such representation learning, Schuck et al. (2015) instructed partici-
pants to press a button to indicate the location of a patch of colored squares within a reference
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frame: Regardless of the color of the squares, if the patch was closer to the bottom left or top
right, one key was to be pressed, whereas if the patch was closer to the bottom right or top left,
a different key was to be pressed. Initially, the task was perceptually difficult albeit conceptually
straightforward. At some point during the task, unbeknownst to the participants, a deterministic
mapping between the color of the patch and the correct response was introduced—all patches
that were near the bottom left or top right were red, whereas the other patches were blue. Despite
extended practice with the location-based policy, some participants spontaneously adapted their
state representation to the new structure of the task, using color to respond faster. The strategy
shift was preceded by an increase in color information content in the medial prefrontal cortex
(Schuck et al. 2015). These results directly show that humans can quickly and flexibly change
strategies from one feature to another in the absence of explicit instructions, as had been hinted
at by the category learning work.

Notably, categorization tasks, and other commonly used dimensional attention learning tasks
such as theWisconsin Card Sorting Task in humans (Berg 1948,Milner 1963, Steinke et al. 2018)
and the intradimensional/extradimensional shift task in animals (Birrell &Brown 2000) commonly
test attention learning with deterministic feedback (Radulescu et al. 2019a). To address attention
learning in POMDPs, we focus on studies that use probabilistic reinforcement, as such an impov-
erished feedback signal places stringent requirements on the representation learning algorithm.

Several recent studies directly address the interaction between attention and reinforcement
learning in probabilistic settings. Tasks in this literature bear a strong resemblance to category
learning tasks in that learning a response policy can be construed as categorizingmultidimensional
stimuli according to the response that maximizes reward for each. An important methodological
development for studying representation learning in these tasks has been the adoption of trial-by-
trial model fitting (Bishara et al. 2010, Daw 2011, Marković et al. 2015, Wilson & Collins 2019).
This method allows for inferring the dynamics of internal states (such as attention), predicting
individual participants’ future behavior given those states (e.g., what they will choose, or how
quickly), and searching for brain correlates of computational components underlying ongoing
behavior.

Using this approach, Niv et al. (2015) have demonstrated that representation learning recruits
the same brain areas known to engage in goal-directed attentional selection (Corbetta & Shulman
2002). A subsequent study that directly measured dimensional attention using a combination of
functional MRI and eye tracking showed that humans choose and learn based on an attentionally
filtered state representation that dynamically changes as a function of experience (Leong et al.
2017). Indeed, the same attentional-control network that is engaged during instructed attentional
set shifting is sensitive to learned attention, broadening the role of cortical networks classically
thought of as supporting visual attention to include representation learning (Scolari et al. 2015).

We note here that the question of attentional selection has also been longstanding in associa-
tive learning, albeit with a focus on attention as enhancing learning about features of a stimulus,
or making decisions based on some features and not others, rather than subselecting features for
processing and representing. Two prominent theories emphasize opposing factors that might de-
termine how attention is allocated between competing stimuli: the consistency with which a fea-
ture predicts reward (Mackintosh 1975), and its inverse, uncertainty about the prediction (Pearce
& Hall 1980). The balance between these two factors might depend on the purpose of selective
attention, with attention to predictive features affecting action selection, and attention to uncer-
tain features enhancing allocation of learning from feedback (Dayan et al. 2000, Gottlieb 2012,
Grossberg 1987). These theories emphasize how quickly one should update reward expectations,
whereas attention-learning theories in the categorization literature focus more on how we choose
what to attend to.
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Boil
water

Choose
tea

Attending
in time

Kettle
on

Water
tap on

Grouping
observations

Kettle
whistles

Cupboard
open

Teabags
out

PRESENT

Figure 2

Selectively remembering and organizing past observations. For any given task, time can be viewed as an axis
of the representational space (Figure 1). Consider a chain of observations one could make during the task of
making tea. Only some of those past observations have relevance for the task. The question of which
observations to remember can thus be reframed as attention learning in time. The agent has to selectively
attend not only to different aspects of present sensory data but also to different past observations that should
be included in the state. Once stored in memory, observations can be grouped in such a way as to facilitate
retrieval when they become relevant for the task.

Finally, current models of human attention learning are limited to selecting among a finite set
of possible features rather than modifying representational spaces to accommodate new ones. But
a more general form of representation learning would require flexibly changing representational
spaces, a problem we turn to in Section 2.2.1.

2.2. Learning to Remember

Reducing the size of the representation space using attention is one half of representation learning.
The other half requires the opposite operation: augmenting the current observation, for exam-
ple, using information stored in memory (Barron et al. 2013, Biderman et al. 2020, Bornstein &
Norman 2017, Shadlen & Shohamy 2016). For instance, remembering our recent actions when
making tea will helpfully resolve whether the state of the world already includes sugar in the cup
and whether water has been boiled or not. This gives rise to two additional representation learn-
ing problems: (a) learning what to store in working memory to augment the current observation
(e.g., recent sugar-related actions), and (b) organizing past experience in long-term memory in a
way that facilitates retrieval of their summary statistics in the relevant circumstances (Figure 2).
In particular, for the latter, rather than encoding each observation into memory, say, by order of
appearance, it is useful to infer which future situations current information might be relevant to—
that is, to categorize observations by the states to which they pertain—and update the summary
statistics of that state in long-term memory with the current observation. When the state (and
thus the prior observation) becomes relevant again, it can be retrieved and used and potentially
updated with new, pertinent information (Gershman et al. 2017). This ability to actively select
different aspects of our memories in the service of decision-making depends on the interaction
between multiple memory systems that may operate on different timescales (Brunec et al. 2018,
Hoskin et al. 2019).

2.2.1. Organizing memory around latent causes. As is the case with attention, adaptive ac-
counts of memory cast memory formation as a problem of generalization, but in time rather than
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in perceptual space (Anderson & Milson 1989). From a reinforcement learning perspective, re-
membering can be viewed as a meta-decision that affects an agent’s construal of state. The broader
question of representation learning can therefore be phrased as follows: Which past and present
sensory data should the agent use to define the state?

Latent-cause inference provides a statistical framework for answering this question by group-
ing related experiences into latent (i.e., hidden) causes (Courville et al. 2006, Gershman et al.
2015). Latent-cause inference treats memory formation as a clustering problem, grouping expe-
riences into memory traces based on similarity (Love et al. 2004). Experiences that belong to
the same latent cause can then be summarized, stored, and recalled as part of the same memory
trace (Gershman et al. 2017). One important insight of latent-cause inference theory is that cre-
ating new latent causes in memory depends on the extent to which new experiences are different
enough from old ones to trigger the formation of a new latent cause. This organizational principle
has helped unify a broad range of phenomena in psychology and neuroscience, most notably fear
conditioning, task set learning, categorization, and event segmentation (Anderson 1991; Collins
& Frank 2013; Franklin et al. 2020; Gershman et al. 2010, 2017; Sanborn et al. 2010; Shin &
DuBrow 2021).

To illustrate how latent-cause inference can organize the way we use past memories to di-
rect prediction and action in a new situation, consider compound generalization, the process by
which animals and humans combine past learning about individual stimuli to form new predictions
when encountering a combination of these stimuli. Experimentally, in compound generalization
the agent first learns the predictive value of two simple stimuli. The agent is then tested on a
novel compound that shares features with both of the simple stimuli. The degree to which the
agent generalizes experience from simple to compound stimuli is measured through the resulting
behavior.

The study of compound generalization has long been driven by a debate between elemental
and configural theories. In elemental processing, a compound stimulus is treated as the sum of its
parts, each with its own predictive value; in configural processing, the parts are integrated into a
unique perceptual whole for which predictions are learned separately, with behavior depending
both on the compound and on each of its elements/subcompounds, weighted by their similarity to
the current configuration. Elemental and configural theories fundamentally differ in the degree of
generalization they assume (Soto et al. 2014): Because individual cues are expressed independently
in elemental theories, elemental generalization is stronger than configural generalization.

Soto et al. (2014) integrated elemental and configural theories into an account of compound
generalization based on latent-cause inference. Their model grouped simple stimuli into latent
causes based on their statistical association with reward (Courville et al. 2006, Navarro 2006,
Shepard 1987, Soto et al. 2014).When the agent encountered a novel compound stimulus, it used
the features of the compound stimulus to infer whether one or several latent causes are present.
Critically, recognizing that even repeated presentations of the same stimulus (in training) may
lead to somewhat different perceptions trial by trial, latent causes in this model were associated
with whole regions in perceptual space. These are called consequential regions, as they describe a
region in perceptual space that leads to the same reward consequences. According to the model,
experiences in the same consequential region are stored together at learning and recalled together
at decision time. Indeed, the model does not remember every experience—it summarizes them in
sufficient statistics (the extent of the consequential region and the probability of reward) that
are associated with the latent cause. From this organization follows generalization: The extent to
which a particular experience will generalize to related ones depends on the structure and size of
the consequential regions. This principle explains, for instance, the effect of sensory modality on
elemental versus configural processing (Melchers et al. 2008).When two stimuli are from different
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modalities, they are more likely to be clustered into two separate consequential regions (leading to
summation of predictions when the compound is presented); whereas when two stimuli are from
the same modality, they are most often clustered into a single consequential region (leading to
averaging of predictions for the compound) (Soto et al. 2014).

Viewing memory organization through the lens of latent-cause inference suggests that signals
that disambiguate latent causes will be useful in organizing memory encoding and retrieval. One
such signal is the context (i.e., the set of features that remain relatively constant over time). Indeed,
observations encoded in a similar context are putatively bound in memory by the context in which
they were encoded and tend to jointly influence decisions (Bornstein & Norman 2017). In fact,
one can argue, based on latent-cause inference theory, that context can be defined as the currently
active latent cause. And, as predicted by latent-cause theory, recent work suggests that events that
deviate from our expectations—and therefore signal a new latent cause—help organize memories
into distinct memory traces (Rouhani et al. 2018, 2020).

2.2.2. Using memory to augment state representations. Memory also influences state infer-
ence and representation by augmenting immediately available sensory observations with previous
ones that are germane to inferring the current state or latent cause. Todd et al. (2009) articulated
this problem in the form of a POMDP that defines its internal state as the current observation
augmented with a working memory component. Their model learned what recent observations
are important to store in working memory through trial and error: The action space included
not only external actions (i.e., pressing a button) but also memory actions (i.e., replacing current
working memory content with a new observation). Learning the optimal memory policy for this
POMDP was similar to learning external actions through trial and error and updating state val-
ues and action policies based on prediction errors. The algorithm learned to behave optimally in
a benchmark human sequence-learning task and exhibited computational constraints similar to
those seen in human working memory.

Collins et al. (2014) used a different implementation of working memory to model a deter-
ministic instrumental learning task with a varying number of states (stimuli) and three possible
actions. Their agent had two independent components: a standard action value–learning module
and a working-memory module that retained the most recent observations and decayed over time.
On each trial, the agent’s policy was a mixture of the two components, where the mixing propor-
tion was determined by the stimulus set-size (how many states humans had to learn about) and a
fixed working-memory capacity. Collins et al. (2014) found that incorporating a limited-capacity
working memory into the model captured human behavior better than did simple reinforcement
learning. However, this model did not learn what to store in working memory.

Neither of the above models incorporated the idea of latent causes into the structure of mem-
ories used to augment reinforcement learning. Future work on representation learning stands to
benefit from modifying these theories of working memory to account for the latent structure of
memories, which can itself change with experience.

2.2.3. Memory for relational structure. Models of memory that we have discussed so far ad-
dress the question of which memories should be included in which state. But another aspect of
memory that may be critical for generalization is its relational structure. Within the same state,
humans group memories and concepts in relation to one another and use this structure to make
predictions about the future (Behrens et al. 2018, Schapiro et al. 2013). One recent proposal by
Whittington et al. (2020) combines one-shot Hebbian memory with a mechanism for learning the
relational structure between individual memories. This mechanism enables the model to address a
memory based on its position in a graph. Since the graph structure is abstracted away from sensory
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Sequential sampling
algorithm:
an algorithm that
approximates a
probability
distribution using a
finite set of samples
and updates the
samples after each
experience

input, the model can efficiently generalize to new, unseen environments. Evidence suggests that
humans can indeed learn to represent the temporal structure of memories as graphs and use this
knowledge to infer relationships that they do not directly experience (Garvert et al. 2017, Mark
et al. 2020).

3. APPROXIMATE INFERENCE IN REPRESENTATION LEARNING

In the above discussion, we eschewed implementational constraints on latent-cause inference.
However, these are nontrivial. In particular, in this framework, the agent’s interpretation of the
world relies on inferring a probability distribution over possible states given current and past ob-
servations. Exact Bayesian inference of this distribution is typically intractable in most cases (Niv
et al. 2015, Roy et al. 2005). For this reason, sampling algorithms have recently gained popular-
ity as neurally plausible mechanistic accounts of how Bayesian inference may be realized in the
brain online as new information comes in (Fiser & Lengyel 2019, Haefner et al. 2016, Sanborn &
Chater 2016, Sanborn et al. 2010, Schneegans et al. 2020, Speekenbrink 2016).

Taking a sequential sampling view of learning explains the puzzling finding that even though
learning behavior is often consistent with Bayesian inference at the group level, individuals are
muchmore variable in their actions during a single learning episode, and learning can be an all-or-
nothing process (Bower & Trabasso 1963, Daw & Courville 2007, Gallistel et al. 2004). This type
of insight learning has been observed not only in simple associative learning studies, but also in
experiments in which humans inferred hidden task structure (Schuck et al. 2015). Insight learning
through sampling is also consistent with eye-tracking studies of multidimensional learning, in
which humans appear to abruptly switch between different task representations (Leong et al. 2017,
Rehder&Hoffman 2005).These findings suggest a mechanism by which humans sample different
hypotheses about task structure and use them as a stand-in for the true structure of the task.

One recent study has explicitly modeled selective attention measured with eye-tracking as a se-
quential sampling algorithm that performs approximate statistical inference about task structure
(Radulescu et al. 2019b). According to this model, humans build task representations by testing
one hypothesis at a time about which features of the world are relevant for representing states.
The hypothesis is updated by sampling new hypotheses in proportion to how consistently they
predict recent observations stored in memory. The current hypothesis, in turn, directs attention
to particular aspects of multidimensional stimuli (Radulescu et al. 2019a). Sequential sampling
can thus provide a coherent mechanistic account for how attention and memory processes sup-
port representation learning, grounding it in principles of statistical inference (Daw & Courville
2007, Radulescu et al. 2019b). This view is consistent with empirical work showing that the focus
of attention depends on what aspects of past experience are remembered (Goldfarb et al. 2016,
Günseli & Aly 2020, Hutchinson & Turk-Browne 2012, Myers et al. 2017).

It is possible that sequential sampling algorithms could accommodate problems of increasing
complexity by gradually adding more than one hypothesis or by considering alternative ways to
parametrize the proposal distribution for new particles (Ballard et al. 2018, Goodman et al. 2008,
Radulescu et al. 2019a, Song et al. 2020, Wilson & Niv 2012). Hypotheses themselves could take
the form of task rules or causal links between observations and latent causes (Radulescu et al.
2019a). While additional work is needed to disambiguate between these different implementa-
tions, sequential sampling algorithms are a useful general way to think about how people test hy-
potheses about which features are most relevant for the task at hand (Ballard et al. 2018, Radulescu
et al. 2019b, Sanborn et al. 2010, Song et al. 2020, Wilson & Niv 2012).

But how do humans know how long to sample in order to approximate the utility of a task rep-
resentation well enough to make good decisions? Resource-rational theory provides a principled
answer to this question by framing the problem in terms of the computational cost of sampling
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additional hypotheses (Hay et al. 2014, Russell &Wefald 1992). To be resource rational, an agent
should only sample for as long as the cost of sampling is smaller than the additional value gained
by expending computational resources. This idea has successfully been applied to modeling how
humans make decisions in consumer choice. Analyzing gaze data in a ternary choice experiment,
Callaway et al. (2019) have shown that people’s fixation sequences are consistent with an agent that
optimally solves the trade-off between performance and cost of computation. This approach has
also been leveraged to model more complex computations, including planning and task decompo-
sition (Callaway et al. 2018,Correa et al. 2020). In conjunction with sampling-based approaches to
representation learning, resource rationality may therefore provide a set of mechanistic principles
by which good-enough representations can flexibly be learned for a variety of tasks.

4. FATHOMING THE UNFATHOMABLE MINDS OF OTHERS

Arguably the most complex part of our environment consists of other people, whose key features
such as current beliefs (Baker et al. 2017), mental states, and traits (Tamir & Thornton 2018) are
rarely observable. As a result, we often infer these latent states from observable actions, physical
characteristics of the target person (e.g., formal attire), and situational factors (e.g., job interview)
with the overall goal of making accurate predictions about behaviors of others (Vélez & Gweon
2020).

The interactive-POMDP framework by Gmytrasiewicz & Doshi (2005) extended POMDPs
to situations where multiple agents interact, each representing the other agents in their own
POMDP. A later Bayesian theory of mind (BToM) model (Baker et al. 2017) further assumed that
an observer uses POMDPs to represent the relationship between the inherently hidden minds
of others (e.g., beliefs and desires) and observable variables such as actions and environments.
In this study, human observers watched an animated agent (henceforth, a target) attempting to
navigate to different goals (food trucks) with its view partially blocked by obstacles. The BToM
model correctly predicted observers’ answers to questions regarding beliefs (e.g., does the target
believe a Korean food truck is on the other side of the parking lot?) and desires (e.g., does the
target like Korean food better than Lebanese food?) given the observation (e.g., the target goes
past the Lebanese food truck to where they can look beyond an obstacle), appropriately capturing
an observer’s inference about the target’s beliefs and desires given the observation.

Beyond predicting other people’s actions, inferring other people’s hidden cognitive states (e.g.,
knowledge and intention) is useful when we need to learn from feedback given by other people.
For instance, we can make inferences about someone’s knowledge from observed actions and ad-
just how much we learn from them (for a review, see Shafto et al. 2012). Similarly, if we receive
evaluative feedback (reward) from someone who we believe intends to communicate a rule to us,
we can use their feedback to figure out the rule rather than trying tomaximize the reward (Ho et al.
2019). On top of knowledgeability and intention to teach, people consider whether the teacher is
trustworthy or has bad intentions (Landrum et al. 2015). Children and adults take into account
niceness and honesty (Mascaro & Sperber 2009) as much as the smartness of a teacher when de-
ciding whom to ask for information, suggesting that we draw inferences from traits, a deeper layer
of hidden states.

Trait inference is beneficial in that it provides a stable basis for generalizing behaviors across
different situations. People spontaneously form mental representations of other people’s traits
(Winter & Uleman 1984), even when the immediate task does not require trait inference and
could be performed better when ignoring such information. For instance,Hackel et al. (2015) had
participants make a series of decisions about a partner in a game where the other player divided a
pool of points between the two players. Importantly, immediate rewards (the number of points the
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target shared with the participant on a trial) and generosity (the proportion shared from the pool)
were orthogonalized, and participants could maximize their share by just focusing on the imme-
diate rewards, ignoring the trait generosity. Supporting the idea that spontaneous trait inference
guides decisions, participants used both the reward magnitude and learned generosity information
in making their decisions, with the ventral striatum responding to both reward and trait predic-
tion errors. These results suggest the importance of including a mental model of other people
in the state space as a basis for guiding decisions. In addition to traits such as generosity, people
seem to spontaneously represent how powerful the people around them are, relative to themselves
(Kumaran et al. 2016), with the hippocampus representing information regarding other people’s
power and affiliation, creating a social map that can help humans navigate the social world (Tavares
et al. 2015).

We also often build models of entire social groups—namely, stereotypes (Hilton & von Hippel
1996). For example, people associate gender with different professions, and even after learning
counter-stereotypic information (e.g., Elizabeth is a doctor, and Jonathan is a nurse), the stereo-
typic association lingers and slows down responses that are counter-stereotypic (Cao & Banaji
2016). Such associations emerge early in development and bias inferences, for instance, about racial
group membership when information about characteristics such as wealth is provided (Olson et al.
2012). It is worth noting that, as in nonsocial decision-making, features that are relevant to so-
cial decision-making can vary depending on the problem at hand. Therefore, the same questions
about representation learning, and the involvement of attention and memory processes, are likely
to be relevant—and even exacerbated—in the social setting. For instance, when people are eval-
uating a group of people based on interactions with group members, experiences with outlying
group members weigh more heavily in the overall evaluation of the group, as predicted by models
that assume representation learning and latent-cause inference. In particular, these models infer
that outlier experiences come from a separate latent cause or group and, as a result, overweigh
their contribution to overall assessment (Shin & Niv 2021). The hierarchical nature of groups
composed of individuals therefore suggests another open question: How do the inferred charac-
teristics of social groups inform the state inference of stable traits of an individual group member
and, in turn, the transient mental state of the individual?

In the real world, we often generate spontaneous thoughts by representing the mental models
of others (Mildner & Tamir 2018). And we effortlessly copy others’ strategies to solve complex
tasks (Rendell et al. 2010). Studying how we build models of the highly rich and partially observ-
able social world is therefore valuable not only because it will help understand social decision-
making, but also because it will provide deeper insights into how we represent the world as a
whole (Kampis & Southgate 2020). The field of social psychology has generated a wealth of re-
search on topics that parallel questions in representation learning, for instance, how social groups
organize memories about group members (Sherman et al. 2002), how memory about a person and
group-level representations interact with one another to guide predictions about individual be-
havior (Brewer et al. 1995), and how attention is allocated to information that fits our stereotypes
(Bastian & Haslam 2007, Plaks et al. 2001). It would be useful to draw upon this existing body
of research to further our understanding of inference processes and representation learning, es-
pecially given that our partially observable world so often involves making decisions about other
people.

5. ISSUES AND FUTURE DIRECTIONS

We have reviewed work on how attention and memory processes contribute to representation
learning, describing how these processes can be formalized within the framework of approximate
Bayesian statistical inference within POMDPs, and arguing that people often organize experiences
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around their inferences about the social world.We now outline some open questions and possible
future directions.

5.1. Determining the Balance Between Elements and Configurations

Echoing the debate between elemental and configural theories discussed in Section 2.2.1, sev-
eral studies on representation learning have employed trial-by-trial model fitting to ask under
which conditions humans adopt feature- versus object-based representations (Ballard et al. 2018;
Farashahi et al. 2017, 2020; Mack et al. 2016; Marković et al. 2015). An open question concerns
the dynamics of the balance between the two and their neural implementation.

Humans and animals are able to encode unique conjunctions on the fly (Melchers et al. 2008),
with the hippocampus arbitrating the degree to which individual memories generalize into a co-
herent whole (Ballard et al. 2019,Duncan et al. 2018, Kumaran &McClelland 2012). Some recent
evidence suggests the possibility that feature- and object-based representations may be reinforced
in parallel (Ballard et al. 2019) and could be subserved by different specialized neural systems, all
of which project to parts of the striatum. For instance, while the hippocampus may support object-
based representations via projections to the ventral striatum (Haber &Knutson 2010), visual areas
could convey feature-based representations via projections to the caudate tail (Seger 2013). This
specialized organization in corticostriatal synapses appears to be maintained downstream in ni-
grostriatal dopaminergic synapses, potentially allowing updates of both elemental and configural
state features in parallel (Engelhard et al. 2019, Hebart et al. 2018, Lee et al. 2020).

5.2. Hypothesis Spaces for State Representation

All algorithms for representation learning discussed in this review assume a low-dimensional hy-
pothesis space over which inference can occur. In most experiments, this space is assumed to con-
sist of separable dimensions such as color or shape. A pressing question remains regarding what
are the building-block dimensions that define the axes of hypotheses in the real world (Boroditsky
& Ramscar 2001, Medin et al. 1993, Navarro 2006). One possibility is that these dimensions are
themselves learned via an unsupervised statistical inference process that extracts natural variation
in the environment (e.g., covariance and hierarchical structure) (Kemp et al. 2007, Sanborn et al.
2009). For instance, Sanborn et al. (2009) showed that human-like dimensional biases emerge
when training latent-cause inference algorithms (see Section 2.2.1) on perceptual inputs that
match those encountered by children.

But there remains a gap between the computational-level description of such models and their
algorithmic implementation and neural substrates. Future work on Bayesian approaches to rep-
resentation learning stands to benefit from understanding whether the assumptions such models
make about representational primitives (e.g., simple features, conjunctions/compositions, cluster
assignments, and motor programs) are borne out in neural data (Mack et al. 2016, Park et al. 2020,
Tomov et al. 2018).

Another way to bridge this gap is to ask whether the kinds of structure that Bayesian models
capture can be learned and represented in biologically plausible artificial neural networks (ANNs).
Research at the intersection of human and artificial intelligence is focused on endowing ANNs
with the kinds of dimensional biases humans display, for example, by tailoring the training regime
to data constraints present in human development (Feinman & Lake 2018, Orhan et al. 2020,
Smith et al. 2011) or by teaching agents to implicitly represent structure (e.g., objects and scenes)
in an unsupervised manner (van den Oord et al. 2018, Sitzmann et al. 2019).

Various data-driven approaches have also led to the insight that conceptual representations
are much richer than previously thought (Battleday et al. 2020, Hebart et al. 2020, Hornsby et al.
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2020). For example, Hornsby et al. (2020) applied a Bayesian nonparametric model to consumer
rating data to challenge a long-standing assumption of laboratory studies. They found that, rather
than organizing concepts only by their intrinsic dimensions and features (e.g., bananas are long
and yellow), people organize concepts around what they can do with them (e.g., bananas go well
in smoothies). Such work demonstrates the special status of actions in conceptual organization
and points to a possible role for affordances as a key element of hypothesis spaces that guide
representation learning (Khetarpal et al. 2020).

5.3. Toward Domain Generality in Representation Learning

Several recent studies suggest that human task representations differ across domains. For instance,
Wu et al. (2020) found significant differences in exploration behavior depending on whether the
task was defined in a spatial or conceptual domain, and the extent to which humans adopt ele-
mental or configural representations depends on whether task stimuli are abstract or naturalistic
(Farashahi et al. 2020). These results point to the possibility that the so-called psychological space
(Shepard 1987) may be meaningfully decomposed into domains that have vastly different, yet
relevant, underlying structures (e.g., perceptual features, physical properties, abstract conceptual
properties, social graphs, and time).

Whether there exist learning mechanisms that can capture structure across different domains
remains an open question. One approach that may move us closer to an answer is to complement
typical laboratory experiments with naturalistic data from task environments that more closely
match those that humans are likely to encounter in real life (Nastase et al. 2020, Smith et al.
2011). Allowing humans to be embodied and interact with naturalistic environments would allow
us to study the full gamut of inductive biases that they use to solve in the real world even those
tasks that have long been considered canonical lab experiments, such as visual search (Radulescu
et al. 2020).

In the social realm, it is plausible, for example, that people reason by learning the structure of
discrete graphs (Lau et al. 2020, Parkinson & Du 2020, Parkinson et al. 2017,Wu et al. 2020) and
build a cognitive map from piecemeal learning (Park et al. 2020). Integrating this knowledge with
models of other agents (Baker et al. 2017) may support a range of functions, from cooperation to
imitation learning (Kleiman-Weiner et al. 2016,Rendell et al. 2010), and facilitate the transmission
of knowledge about task structure.

In short, systematically testing, in naturalistic domains, the theories of representation learn-
ing reviewed here is a critical step forward in building a richer picture of how humans learn to
represent a wide range of tasks.

SUMMARY POINTS

1. Humans learn compact representations of tasks that help them learn faster in the future.

2. Such representation learning relies on selective attention and memory to extract the
most relevant features of both past and present experiences.

3. Approximate Bayesian inference provides an integrative framework for modeling how
experiences are converted into task representations.

4. The ubiquity of this framework becomes clear when we consider how people use abstract
world models to interpret social cues and predict others’ behavior.
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FUTURE ISSUES

1. How do attention and memory interact to give rise to task representations?

2. Are elemental features and configural objects represented and reinforced in parallel?

3. What are the so-called primitives that constrain inference of task representations, and
are they also learned from experience?

4. Do inference algorithms for representation learning extend to naturalistic settings?
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